Saving the Model
Summary
-
Saving a model
-
SavedModel
formatmodel.save('<path>')
HDF5
format
model.save('<path>.h5')
-
-
Loading a model
tf.keras.models.load_model('<path>')
Content
Saving and restoring the models
model.save("save1")
restored_model = tf.keras.models.load_model("save1")
y_predict = restored_model.predict(X_test)
import matplotlib.pyplot as plt
plt.scatter(X_test, y_test, c="g", label="Expected")
plt.scatter(X_test, y_predict, c="red", label="Actual")